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Effect of sliding friction forces on the 
strength of brittle materials 

B. R. LAWN, S. M. WlEDERHORN,  D. E. ROBERTS 
Center for Materials Science, National Bureau of Standards, Washington, DC 20234, USA 

A model is developed for the strength degradation of brittle surfaces in sliding contact 
with spherical indenters. The loss of strength is associated with the propagation of partial 
cone cracks in the wake of the indenter. Detailed fracture mechanics calculations are 
circumvented by working in the limit of ideal point-load contacts, with the key 
proposition that the crack dimensions remain insensitive to rotations of the cone axis 
relative to the specimen free surface. In this way the simple Roesler solution for classical, 
well-developed cone cracks may be retained as a convenient "'reference state" for a more 
general theoretical description, whereby the superposition of a tangential friction force 
onto the normal loading is accommodated via a straightforward coordinate transformation 
operation. The major predictions of the model are tested by measuring the strengths of 
glass surfaces after contact with a sliding steel sphere. In particular, the degraded strengths 
are not strongly influenced by the coefficient of friction, contrary to expectations from 
some earlier indentation analyses. 

1. Introduction 
Brittle materials such as glasses and ceramics are 
highly susceptible to mechanical degradation by 
small-scale contact events. The degradation can 
include a microcracking component, and thereby 
result in severe lo~ses in strength. Consequently, 
design criteria for brittle materials should strictly 
include some provision for assessing the contact 
loading history in prospective service environments. 
Considerable attention has been given to this 
problem under conditions of normal contact 
[ 1-5] ;  strength degradation formulae for surfaces 
subjected to either static or impact loading, with 
either "blunt" (elastic) or "sharp" (elastic- 
plastic) contacts, have been developed from 
indentation theory and tested extensively on 
glass specimens. The primary strength-controlling 
variables are the normal load pertinent to the 
dominant contact-induced flaw and the material 
toughness. 

One contact configuration which has received 
relatively little attention in the Context of strength 
degradation is that of sliding contact, in which a 
superposed "tangential" load augments the driving 
force for local fracture. Sliding contact is a poten- 

tial problem in any ceramic system involving 
moving parts. It is, for instance, believed to be a 
major cause of failures in heat engines with ceramic 
stator and rotor component ~ [6-8] .  The best 
studied case of sliding contact is that of a sphere 
translating across a flat surface under conditions of 
constant friction and purely elastic deformation. 
Closed-form solutions for the stress fields [9], 
and numerical computations of crack evolution 
within these fields [10], are available for this 
case. The level of frictional stress at the contact 
interface is a critical factor in determining the 
intensity of the tensile component of the near 
field, and hence the normal load to initiate cracks 
from surface flaws. Essentially, the cracks assume 
the geometry of somewhat distorted Hertzian 
cones, i.e. "partial cones" [11], with their origins 
at the trailing edges of the contact circles. Several 
experimental studies have confirmed the main 
predictions of the earlier analyses, in qualitative 
if not quantitative detail [12-16].  Variants on 
the original calculations, e.g. taking "stick-slip" 
contact effects into account [ 17], merely reinforce 
the prevailing conviction that friction forces are 
highly deleterious to structural integrity. 
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However, none of the above sliding damage 
studies explicitly addresses the question of strength 
degradation. Given that sliding does enhance crack 
initiation, what is the magnitude of the ensuing 
strength reduction once such cracks have propa- 
gated and arrested? It could be argued in the 
interest of conservative design that the initiation 
of contact fracture in brittle components is almost 
inevitable at some stage of service, in which case 
it is only the final crack configuration which 
requires specific consideration. This kind of 
argument is, of course, consistent with the 
'~vorst-case" design philosophy generally adopted 
by the glass and ceramic community. There is 
some attraction in having to deal with only the 
fully developed sliding-induced cracks, in that the 
near-contact complexities (e.g. stress-field inhom- 
ogeneities, surface flaw distributions) no longer 
exert a strong influence on the fracture mechanics. 
We shall accordingly apply this approach to the 
issue of strength degradation, with the ultimate 
aim of deriving an appropriately simple design 
equation in terms of the contact loading variables 
and material parameters. 

In pursuit of this aim we retain the sphere-on- 
flat as our ideal sliding configuration, but circum- 
vent the mathematical tedium of a full-scale 
fracture mechanics analysis [10, 18] by means of a 
stratagem. We adopt the well-known far-field 
solution for Hertzian cone cracks in normal 
loading [19] as our "reference state", and intro- 
duce a geometrical transformation scheme to 
incorporate frictional terms into this solution. 
Finally, we test the predictions of the resulting 
formulation on glass specimens subjected to a 
wide range of frictional sliding contact conditions. 

trajectories and energy release rates) [18]. We shall 
try to bypass these complications by focusing on 
far-field limiting solutions in which the incor- 
poration of frictional tractions is achieved via a 
simple coordinate transformation scheme. This 
will provide us with a formulation for the effective 
crack size in terms of the contact variables, from 
which the degraded strength may be predicted. 

2.1. Partial cone crack configurations 
Let us begin with the Classical cone crack con- 
figuration of Fig. 1 [ 11]. In the far-field approxi- 
mation the normal load, P,  is assumed to be 
concentrated at the cone tip. The cone geometry 
is specified by the dimension, c, and inclination 
angle, a. The solution for this case, first given by 
Roesler [19], has the simple form 

c = (r le /Ke)  2/3 (1) 

characteristic of all penny-like cracks (i.e. cracks 
with circular fronts) [20]; here ~7 is a dimension- 
less quantity dependent on the cone angle a (in 
turn dependent on Poisson's ratio [18]) and K c 
is the critical stress intensity factor for crack 
extension (toughness). Of course, implicit in the 
writing of this equation is the assumption that the 
load is sufficient to have initiated the cone crack 
in the first place. 

How might Equation 1 for ideal axial loading 
be modified to allow for a superposed tangential 
sliding force? A useful clue is obtained from an 
earlier study of the surface topography around 
cone cracks in diamond [21]. It had long been 
known that the material outside the surface rim 
of the (truncated) cone suffers an appreciable 
uplift, but within this rim is barely displaced 

2. Model for strength degradation in sliding 
contact 

Our aim in this section is to construct a theoretical 
base for predicting strength characteristics of 
bodies subjected to frictional contacts. We take 
a free-sliding sphere as our model contact system, 
so that we may adopt the well-studied Hertzian 
cone crack as a convenient reference state for the 
fracture geometry. A complete analysis of the 
problem would require a detailed consideration of 
crack evolution through the elastic contact fields, 
embodying all the complications associated with 
uncertain flaw distributions (which determine 
the crack starting points) and with severe stress 
gradients (which determine the subsequent crack 
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Figure 1 Schematic of idealized cone crack geometry, in 
far-field approximation. Normal force, P, is assumed to 
be concentrated at point on surface SS. Cone has charac- 
teristic dimension, c, inclination angle, a. 
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Figure 2 Schematic showing displacement configuration 
of cone crack walls at incompletely closed interface. 

below its original level, Fig. 2. It was argued in this 
earlier study that the cone crack was being held 
open at its interface by fracture "debris". Since 
the cone walls tend to make shallow angles with 
the outer free surface, i.e. o~ ~ 90 ~ the "wedge 
shaped" portion of material in this region is 
relatively compliant, explaining the uplift. Within 
the surface rim the material is relatively rigid. The 
implication here is that the bulk of the applied 
loading prior to formation of the crack must be 
supported by the cone fmstrum directly below the 
contact; that is, the displacement response of 
material outside the fmstmm should be of little 
consequence to the energetics of the loading 
system. Indeed, in actual testing it is usually 
impossible to detect any load discontinuity on 
Hertzian crack pop-in unless elaborate sensing 
devices are used. 

This conclusion leads us to the following ploy 
for accommodating the frictional component 
within the framework of the Roesler cone crack 
solution. We note first that, in the spirit of the 
point contact approximation, vectorial super- 
position of an appropriate tangential force, fP, 
increases the magnitude of the loading, to P '  say, 
and rotates the line of  action, through/~ say; 

P '  = P(1 +f2)1/2 (2a) 

/3 = arc tanf  (2b) 

Hence the coefficient, f ,  is the sole determinant 
of our transformed load system. Now we make 
the key assertion that the essential geometry of 
the cone crack will remain unchanged by this 
transformation, except that the normal load is 
replaced by P '  and the cone axis is rotated through 
/3, to remain symmetrical about the line of action, 
as in Fig. 3. The rotational operation proposed 
here may be viewed equivalently as a simple tilt 
of the specimen surface relative to the contact 
axis in Fig. 1; and since material displacements 
outside the cone frustrum are of only secondary 
importance in their influence on the fractur~ 
mechanics, we may retain Equation 1 as the basis 
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Figure 3 Hypothesized cone crack geometry for sliding 
contact case. Frictional force component is accommodated 
into scheme of Fig. 1 by an effective rotation of co- 
ordinates, equivalent to tilting the original surface SS 
through S'S'. Sliding direction left to right. 

for determining the crack dimension appropriate 
to sliding contact. Accordingly, in conjunction 
with Equation 2, we obtain the slightly modified 
Roesler solution 

c' = ( r ~ ' / K c )  2'3 

= (rlP/Ke)2/a(1 -F f 2 )  1/a (3a) 

The rotated cone on its steepest side then makes 
an angle 

E = a + p  

= o~ + arc tanf  (3b) 

with the specimen surface. 
It is interesting to check the simplistic geo- 

metrical operation outlined above against more 
detailed, earlier determinations of partial-cone 
trajectories using computer codes [10]. Com- 
parative predictions for two friction coefficients 
are shown in Fig. 4, taking a = 22 ~ for glass [19]. 
It is seen that the present model captures the 
essence of the computer evaluations, allowing 
that the latter includes provision for a non-zero 
area of contact. We may also note that the cone 
base actually intersects the specimen free surface 
in Fig. 4b; we see from Fig. 3 that the condition 
for this type of intersection is that/3 > a, or, from 
Equation 2b, that f >  tan a = 0.4 for glass. Again, 
the diagrams depict a single crack in each case, 
whereas most sliding contacts generate a series of 
such cracks (usually with reasonably regular 
spacing). We shall ignore any such perturbations 
on the ideal cone geometry, on the grounds that 
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Figure 4 Comparison of partial cone crack profiles from present model (solid lines) with more detailed, step-by-step 
computations from earlier fracture mechanics analysis (dashed curves). Profiles are for (a) f = 0.1, (b) f = 0.5, and 

= 22 ~ 

our final strength formulation shall prove to be 
insensitive to variations in friction-related 
quantities. 

2.2. S t reng th  
With the above methodology for predetermining 
crack sizes and shapes in sliding contact events we 
may proceed directly to an analysis of strength 
degradation [4]. The basis equation for the strength 
of a specimen containing a a contact-induced flaw 
of dimension, c', and inclination, ~', is 

o = Ke/t~c ' ' n  (4) 

where ~ = ~k(~') is a dimensionless geometrical 
parameter. It  is assumed in this formulation that 
fracture occurs under equilibrium conditions 
("inert" strength). It is also assumed that the partial 
cones are oriented for max imum tension at the 
deepest point on their bases, i.e. the tensile axis is 
coincident with the sliding direction, once more 
consistent with "worst-case" requirements. Then 
Equations 3 and 4 may be combined to obtain 
a strength equation of the form 

a = ~ ' 3 F ~ J P I ' 3  (5) 

where F is a dimensionless function of f for a 
given Value of a. The dePendence on K e and P 
in this equation is identical to that for purely 
normal loading. 

This leaves us only with the frictional function 
F(f )~  tO evaluate. The basis for such an evaluation 
has been laid down elsewhere [1]. Basically, one 
regards failure as a critical re-initiation process, 
seeking the incremental configuration at the base 
of the tilted cone which maximizes the mechanical 
energy release. In terms of this earlier evaluation 
we may write ff =~,~o 1/2, where ;k embodies shape 
factors (including the effects of the cone crack 
curvature, interactions with the free surface, etc.) 
and ~o = ~o(a') = ~o(f)a defines the rotational 
component associated with the friction forces. 

2 5 6 4  

Details of the computation of the 6o term are 
included in the Appendix. The requisite function, 
which may now be written 

F( f )a  = 1/n'/3~[(1 + [2)'/3~o(f)~11/2 (6) 

is plotted in Fig. 5 for various a. It is immediately 
clear from Fig. 5 that the strength in Equation 5 
is a slowly varying function of friction coefficient, 
amounting to a factor of only two or three at 
extremes of the plotting range. Thus for practical 
purposes it should suffice to determine F( f )a  by 
graphical interpolation for any prospective sliding 
contact configuration. 

3. Expe r imen ta l  d e t a i l s  
In this section we explore the predictions of the 
above model by running sliding friction tests on 
soda-lime glass bars. Our choice of glass here 
simply reflects the convenience of working with a 
material which is transparent, isotropic and 
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Figure 5 Plot of (normalized) function F(f) in Equation 6 
for selected values of a. 



Figure 6 Micrographs showing surface (top) and side (bottom) views of sliding damage on soda-lime glass caused by 
steel sphere of radius 3.17 mm under normal load P = 20 N, for (a) f = 0.1, (b) f = 0.5. Cf. traces of deep cracks in side 
views with corresponding theoretical predictions in Fig. 4. Index marker 0.5 mm. 

homogeneous. We begin by examining the geo- 
metrical features of  the damage patterns, and then 
determine the strength degradation characteristics. 

3 .1 .  G e o m e t r y  o f  par t ia l  c o n e s  
Glass bars of  surface dimensions 120 by 15ram 
were cut from plate of  thickness 5.65 mm. Sliding 
tests were conducted in a simple loading fixture 
[22] using a steel indenting sphere of  radius 
3.17 ram. The sphere, rigidly mounted into the 
end of  a vertical ann, was first loaded normally 
onto the glass surface. Effective lateral translation 
across the surface was then obtained by activating 
a horizontal-drive carriage holding the specimen. 
In our experiments the sliding velocity was fixed 
at 0.13 mm sec -I ,  and the translation distance was 
typically 1 to 3 ram. The specimen was mounted 
such that the track produced was located at a face 
centre and oriented parallel to the long edges of  
the bar. Both normal and tangential loads were 
monitored continuously using conventional strain 
gauge cells, thus allowing the friction coefficient 
to be specified at any point along the track. The 
range of  normal loads covered was 50 to 300N. 
Most of  the tests were carried out in air, but some 
were run with liquid lubricants on the glass surface 
(e.g. water, acetone, silicone oil) [16] to provide 
a broader spectrum of  friction conditions. 

The pertinent features of  the sliding contact 

patterns are evident in the micrographs shown in 
Figs. 6 and 7. Fig. 6 illustrates the more general 
o f  these features, for two values of  f. The surface 
views typify the well-documented distortions from 

Figure 7Micrographs showing surface (top) and end 
(bottom) views of sliding track on glass after strength 
testing. In this example failure initiated from the first 
partial cone along track. Track produced by steel sphere 
under normal load P = 20 N, friction coefficient f = 0.5. 
Index marker 0.5 ram. 
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circular symmetry of the ring crack traces with 
increasing friction [10]. The side views demon- 
strate the associated steepening of the trailing 
cone crack surfaces, in accordance with the 
frictional dependence of a' in Equation 3b; this 
observed trend may be correlated visually with 
the corresponding model representations in 
Fig. 4. The lengths of the largest subsurface cracks 
in Fig. 6 are not substantially different for the two 
cases in Fig. 4, consistent with the insensitivity of 
c' to f i n  Equation 3a. 

Also evident in Fig. 6 are relatively fine scratch 
lines which extend along the lengths of the surface 
tracks. The density of these lines correlates with 
the friction level. This type of damage is caused by 
asperities on the sliding sphere. Each such asperity, 
of course, supports only a minute fraction of the 
macroscopic normal load, and accordingly acts as 
a sharp indenter on the microscale. At this scale 
the local deformation tends to have a predomi- 
nantly "plastic" component [23], thus explaining 
the relatively smooth appearance of the linear 
scratches. These scratches may nevertheless play 
a far from minor role in the general evolution of 
partial cone cracks, in that the local microplasticity 
is capable of generating crack nuclei in its wake 
[24, 25]. Self-generation processes of this kind 
ensure the existence of suitable starting flaws for 
the ensuing partial cone initiation, even on speci- 
mens with originally pristine surfaces. 

Some variants on the somewhat ideal contact 
fracture geometries shown in Fig. 6 were observed 
whenever irregularities occurred in the frictional 
response. Generally, variations in the value of f 
along a given track were reflected in the crack 
density. In cases where tangential forces were 
applied without sliding, only one or two crescents 
formed on the surface, but these differed little in 
general appearance from the first trace in the 
corresponding sequential crack pattern formed in 
free translation. 

Finally, some crack patterns were formed 
without any tangential force component acting 
at all, simply to confirm the value of the crack 
angle a chosen for the "reference state" in our 
earlier theoretical calculations. Even under pure 
normal loading the cone cracks did not always 
exhibit perfect axial symmetry [1 !],  in which 
case the angle was measured at the steepest point. 
The value obtained for our soda-lime glass was 

= 22 +- 1 ~ in agreement with Roesler's deter- 
mination [i9].  

3.2.  S t reng th  measurements  
The strengths of the glass bars were measured in a 
four-point bend fixture, inner span 38 mm andouter 
span 107 mm, with the damaged surface on the ten- 
sile side. The damage tracks were carefully centred 
within the inner span and aligned parallel to the 
direction of maximum tension. Dry nitrogen gas was 
flushed over the tracks prior to applying the bending 
stress, and the specimens then taken to failure in 
< 10 sec, to ensure near-equilibrium conditions of 
fracture [26]. The resulting "inert" strengths were 
calculated from the bending force and specimen 
dimensions using standard thin beam formulae. 

After breaking, each track was examined to 
determine the point at which failure initiated. The 
normal and tangential forces at this point were 
then evaluated from the load cell records, from 
which the operative friction coefficient was deter- 
mined. Although some breaks did initiate from the 
start of the tracks, about half initiated away from 
the ends, usually close to regions of friction 
maxima. In all cases the initiation point could be 
traced to the base of the critical cone at its deepest 
point. Thus, in the example of Fig. 7 we can infer 
the failure origin from the crack morphology: in 
the end view the tear lines clearly trace back to a 
central point on the cone periphery; in the top 
view we see how the crack, after propagating 
downward and sideways from its origin, has run 
back to the free surface, intersecting near (but 
not directly at) the ring crack trace. 

The results of the strength measurements are 
plotted in Fig. 8 as a function of friction coef- 
ficient in accordance with Equation 5. In this 
figure each individual data point at f >  0 represents 
a single test. Different symbols designate the 
normal loads used, but no distinction is made 
between the various conditions of tangential 
loading (e.g. sliding or nonsliding contact, air or 
liquid environment). The data point with error 
bar at f =  0 represents the mean and standard 
deviation of 10 specimens indented under purely 
normal loading at P = 30 N. This last point serves 
as a reference level for normalizing the friction 
function F(f)~ in Equation 6, accordingly plotted 
as the solid curve in Fig. 8. The predicted curve 
appears to represent the data trend within the 
bounds of experimental variation, erring, if any- 
thing, on the side of conservative design. 

4. Discussion 
We have developed a simple model for predeter- 

2566 



Z 

CL 

E 

"0 

0 

e -  

f m i I r - - ~ - - i  

I P =  300 N �9 
600 ~ 200 N o 

/ 

! l O O N  - 
~_ 5 0 N  

400 ~ N o ~  ~ �9 

N A o, s o f 
- oo~ o o ~ 

O o o  o 

200 -- " ~- -- 

_ _ 1  .... 1 _ _ [ _ _ _ _ _ _ 1 _ _ _ . _ _ 1  [ L _ _ _ A  [ _ _  
O 0.2 0.4 0,6 0.8 1.0 

Coeff ic ient  of Friction, f 

Figure 8 Ptot of aP ~/3 against f for glass sub- 
jected to sliding contact with steel sphere at 
specified loads, 

mining the strength degradation characteristics of 
brittle components subjected to sliding contact 
damage. We have avoided the usual complexities 
of a full-scale fracture mechanics analysis by 
adopting the well-established Roseler solution for 
pure normal loading as a reference state, and 
applying a straightforward coordinate trans- 
formation to this solution. The transformation is 
manifested in the formulation for the degraded 
strength as the multiplicative friction function 
F(f)c~, which may be evaluated directly from plots 
such as those in Fig~ 5. The special appeal of this 
approach lies in the prospect of characterizing the 
potential sliding contact response of a given 
materiaJ from normal ioad data alone, in much the 
same way as in the generation of the theoretical 
curve in Fig. 8. Accordingly, the need for access 
to extensive frictional testing facilities in materials 
evaluation programs is greatly lessened. 

The main conclusion to be drawn from the 
present stud3, is that frictional effects play a 
relatively minor role in strength degradation once 
the threshold for cone cracking is exceeded. The 
threshold condhion itself is, of course, much more 
sensitive to the level of  friction [10, 17]. It could 
be argued that reduction in friction forces should 
be a prime design goal, to avoid initiation in the 
first place. However, this approach could be 
counter-productive. Raising the critical loading for 
initiation simultaneously increases the energy 
available for any ensuing propagation; hence a 
single, unusually severe contact event could 
produce an even more dramatic loss of strength 

than before. In this context we may recall that 
some contacts are capable of generating their own 
starting flaws, especially at sharp points or edges 
on the indenter (Section 3.1). 

Consequently, the most conservative designer 
would assume that initiation is inevitable, in which 
case the influence of frictional effects in strength 
amounts to no more than a factor of two or three. 
This factor may be somewhat reduced by crack-  
crack interaction effects where the density of 
damage along the track is high, possibly accounting 
for the tendency of data points at high f to lie 
above the theoretical curve in Fig. 8. However, the 
fact that end failures were not dominant in our 
sliding experiments would appear to provide 
adequate justification for ignoring such effects 
in the strength formulation. 

The theoretical model also makes explicit 
predictions concerning material properties. Clearly, 
there is considerable advantage to be gained by 
selecting materials with high. toughness, K e. 
Poisson's ratio is a parameter with minor influence, 
via the cone inclination angle term, a. These 
material aspects of the sliding contact problem will 
be taken up in greater depth elsewhere [22]. 

Our model has considered onIy blunt indenters, 
but the above conclusions concerning friction and 
material properties in the strength characterization 
are expected to have a certain generality. Once 
the contact-induced cracks penetrate into the far 
field the distinction between "blunt" and "sharp" 
becomes somewhat blurred; the stresses remote 
from the contact are relatively insensitive to con- 

2 5 6 7  



ditions at the contact [18]. The main differences 
are likely to arise in crack geometry terms, hence 
in the frictional function F( f )  in Equation 5, 
although the presence of residual contact stresses 
is an added complication with sharp indenters 
[27, 281 . 
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O00 = 

tYrO = 

Appendix 
Here we reproduce a calculation from the 
Appendix of [ 1 ], with slightly modified notation. 
Our sPecific aim is to determine the failure con- 
ditions for the partial cone configuration in 
Fig. 3. Thus the pertinent variables are the cone 
dimension, c', and inclination, a', and the uniform 
applied tensile stress, O a, which leads to critical 
extension. It is assumed that the tensile direction 
is collinear with the length o f  the sliding track, 
so that initiation occurs f rom the deepest point 
on the cone base. 

Our approach is to treat the critical extension 
as a re-initiation process in the field of the starting 
cone crack [29]. The stress intensity factors for 
an inclined crack in uniform tension are [30] 

K I = kOa c'1/2 sin 2 a' 
(A1) 

Ku = ~Oa C~1/2 sin a' cos c~' 

where X is a dimensionless shape factor. In general, 
the crack will not extend in its own plane, but at 
some tilt angle 0. The local stresses on any such 

crack increment has both opening 
and sliding (mode II) components [29] 

[Ki/(2nr) an ] f~o + [Krr/(27rr) a/2 ] [~o 
1/2 

(A2) 
[Ki/(21rr)anlf~ + [Kn/(2~rr)'/2lf 2 

Xh/( 2r:r) in 

where r is the radial distance from the cone crack 
tip. The f terms are the angular components of the. 
standard crack-tip stress formulae [29, 30] 

= c o s  3 ( o / 2 )  

fr~ = sin (0/2) cos 2 (0]2) (mode I )  (A3) 

fl000 = -- 3 sin (0/2) cos 2 (0/2) 

fr~ = cos (0/2)[1 -- 3 sin 2 (0/2)] (mode IItA4) x 

and the "transformed stress intensity factors" 
K~ and Kh defme the field for the modified crack. 
Combining Equations A1 and A2 gives 

K; = Xoac'V2[J~0 sin = a' + . ~  sinu' cose ']  

Kh = hOaC'ln[f~ sin = a' +fr~ sins '  cos a'] 

(AS) 

The value of 0 appropriate to a given cone 
inclination a' is determined as that for which the 
mechanical energy release rate 

G(O, a') = [(1 -- v2)/E](K~ 2 + Kh 2) (A6) 

is a maximum, v being Poisson's ratio and E Young's 
modulus. The requirement ~G/aO = 0 in Equations 
A3 to A6 gives the critical value of G, 

G c = [(1 -- v2)jk2o2c'/E]co(a ') (A7) 

where e = tya is the corresponding critical applied 
stress, i.e. the "strength", and co(or') is a dimen- 
sionless function of a' (value unity for normal 
cracks, i.e. ~' = 7r/2). 

For crack extension under equilibrium con- 
ditions, we have [29] 

G e = (1 -- v2)K2c[E (A8) 

with K e the toughness. Comparison of Equations 
A7 and A8 then leads us to the strength formula, 
Equation 4, in the text, with 

= ~,~in (A9) 

Frictional variations are therefore manifested 
exclusively via the co term (the ,shape" of the 
crack, hence ~, being assumed invariant), in 
accordance with Equation 3, i.e. co = co(~')= 
r This term is most readily determined from 
the above formulation by numerical analysis [1]. 
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